ИССЛЕДОВАНИЕ ПОВЫШЕНИЯ ФОТОКАТАЛИТИЧЕСКОЙ АКТИВНОСТИ ДИОКСИДА ТИТАНА ЗА СЧЕТ ПРИМЕНЕНИЯ ОКСИДА ВОЛЬФРАМА (VI)

Main Article Content

А. С. Бахтин
Н. В. Любомирский
Т. А. Бахтина
В. В. Николаенко
В. М. Гавриш

Аннотация

В работе приведены результаты экспериментальных исследований по определению возможности повышения фотокаталитической активности диоксида титана за счет применения оксида вольфрама (VI), путем тестирования разложения родамина Б как органического загрязнителя в водных растворах под действием УФ-излучения, в том числе в видимом спектре. В качестве фотокатализаторов использовался промышленный диоксид титана рутильной модификации и триоксид вольфрама, полученный методом биологического синтеза за счет использования жизнедеятельности тионовых бактерий (Thiobacillus ferrooxidans). Установлено, что концентрация красителя в растворе со смесью TiO2 и WO3 в соотношении 1 : 1 под действием естественного солнечного излучения снизилась на 85 % после 28 дней исследования в сравнении с 30 % и 42 % для растворов с чистыми WO3 и TiO2 соответственно.

Article Details

Как цитировать
[1]
Бахтин А.С. ИССЛЕДОВАНИЕ ПОВЫШЕНИЯ ФОТОКАТАЛИТИЧЕСКОЙ АКТИВНОСТИ ДИОКСИДА ТИТАНА ЗА СЧЕТ ПРИМЕНЕНИЯ ОКСИДА ВОЛЬФРАМА (VI) [Электронный ресурс]/ А.С. Бахтин, Н.В. Любомирский, Т.А. Бахтина, В.В. Николаенко, В.М. Гавриш // Строительство и техногенная безопасность. — 2021. — № 22(74). — c.67-78. — DOI: 10.37279/2413-1873-2021-22-67-78.
Выпуск
Раздел
Строительные науки

Библиографические ссылки

Bogue, R. (2014), Smart materials: a review of capabilities and applications, Assembly Automation, Vol. 34 No. 1, pp. 16-22. https://doi.org/10.1108/AA-10-2013-094.

Gopalan, A.-I.; Lee, J.-C.; Saianand, G.; Lee, K.-P.; Sonar, P.; Dharmarajan, R.; Hou, Y.-l.; Ann, K.-Y.; Kannan, V.; Kim, W.-J. Recent Progress in the Abatement of Hazardous Pollutants Using Photocatalytic TiO2-Based Building Materials. Nanomaterials 2020, 10, 1854.

https://doi.org/10.3390/nano10091854.

Chen, J.; Poon, C.-S. Photocatalytic construction and building materials: From fundamentals to applications. Build. Environ. 2009, 44, 1899–1906. https://doi.org/10.1016/j.buildenv.2009.01.002

Hanus, M.J.; Harris, A.T. Nanotechnology innovations for the construction industry. Prog. Mater. Sci. 2013, 58, 1056–1102.

https://doi.org/10.1016/j.pmatsci.2013.04.001.

Fujishima, A., Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37–38 (1972).

https://doi.org/10.1038/238037a0.

Addamo, M., Augugliaro, V., Bellardita, M. et al. Environmentally Friendly Photocatalytic Oxidation of Aromatic Alcohol to Aldehyde in Aqueous Suspension of Brookite TiO2. Catal Lett 126, 58–62 (2008). https://doi.org/10.1007/s10562-008-9596-0.

Palmisano, L.; Augugliaro, V.; Bellardita, M.; Di Paola, A.; García López, E.; Loddo, V.; Marcì, G.; Palmisano, G.; Yurdakal, S. Titania photocatalysts for selective oxidations in water. ChemSusChem 2011, 4, 1431–1438. https://doi.org/10.1002/cssc.201100196

Tsai, S.-J.; Cheng, S. Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants. Catal. Today 1997, 33, 227–237. https://doi.org/10.1016/S0920-5861(96)00152-6.

Cassar, L.; Beeldens, A.; Pimpinelli, N.; Guerrini, G. Photocatalysis of cementitious materials. In Proceedings of the International RILEM Symposium on Photocatalysis, Environment and Construction Materials, Florence, Italy, 8 October 2007; pp. 131–145.

Murata, Y.; Obata, H.; Tawara, H.; Murata, K. NOx-Cleaning Paving Block. U.S. Patent No. 5,861,205, 19 January 1999.

Cucitore, R.; Cangiano, S.; Cassar, L. High Durability Photocatalytic Paving for Reducing Urban Polluting Agents. U.S. Patent No. 8,039,100, 18 October 2011.

Alfani, R. Coatings Based on Hydraulic Binders with an Optimal Rheology and High Photocatalytic Activity. U.S. Patent No. 8,377,579, 19 February 2013.

Bellardita, M.; Di Paola, A.; Megna, B.; Palmisano, L. Determination of the crystallinity of TiO2 photocatalysts. J. Photochem. Photobiol. A Chem. 2018, 367, 312–320.

https://doi.org/10.1016/j.jphotochem.2018.08.042.

Folli, A.; Macphee, D. Photocatalytic Concretes–The interface between photocatalysis and cement chemistry. Cement and Concrete Research. 2016, 85, 48 – 54.

=https://doi.org/10.1016/j.cemconres.2016.03.007.

Cassar, L. Photocatalysis of Cementitious Materials: Clean Buildings and Clean Air. MRS Bulletin 29, 328–331 (2004).

https://doi.org/10.1557/mrs2004.99.

Lukuttsova N.P., Pykin A.A., Postnikova O.A., Golovin S.N., Borovik E.G The structure of cement stone with dispersed titanium dioxide in daily age / Bulletin of Belgorod State Technological University named after. V.G. Sshukhov. – 2016. – № 11. – P. 13-17. https://doi.org/10.12737/22432.

Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H.M. Review on: Titanium Dioxide Applications. Energy Procedia 2019, 157, 17-29. https://doi.org/10.1016/j.egypro.2018.11.159.

Chokriwal, A. Biological Synthesis of Nanoparticles Using Bacteria and Their Applications / A. Chokriwal, M.M. Sharma, A. Singh // Am. J. PharmTech Res. – 2014. – V. 4. – P. 38-61.

Ghashghaei, S. The Methods of Nanoparticle Synthesis Using Bacteria as Biological Nanofactories, their Mechanisms and Major Applications / S. Ghashghaei, G. Emtiazi // Current Bionano-technology. – 2015. – V. 1. – P. 3-17.

DOI: 10.2174 / 2213529401999140310104655

Bekele ET, Gonfa BA, Sabir FK. Use of Different Natural Products to Control Growth of Titanium Oxide Nanoparticles in Green Solvent Emulsion, Characterization, and Their Photocatalytic Application. Bioinorganic Chemistry and Applications. 2021, (6626313), 1–17.

https://doi.org/10.1155/2021/6626313.

Gavrish V.M., Baranov G.A., Khrabrova E.A., Chajka T.V., Gavrish O.P. The effect of the nanopowder, derived from of TTK brand alloy solid, on the epoxy glue performance properties // Energeticheskie ustanovki i tekhnologii (Energy Plants and Technologies). 2016. V. 2. No 3. P. 64–69. (in Russ.). https://elibrary.ru/item.asp?id=27518630.

Gavrish V.M., Fedorova S.A., Khrabrova E.A. Application of microbiological leaching for polymetallic ore dumps in order to extract Ni, Cu, Ti, Cr, Mn, Mo / Gavrish V.M., Fedorova C.A., Khrabrova E.A. // Ecology and development of society, No 4(19), 2016. – P. 22-27.

N.M. Derbasova, V.M. Gavrish, O.P. Gavrish Microbiological destruction of wastes, appearing at production and processing of live ammunitions / N.M. Derbasova, V.M. Gavrish, O.P. Gavrish // Topical issues of nuclear chemical technologies and environmental safety: a collection of articles based on the materials of the scientific and practical conference (June 15-18, 2016, Sevastopol). – Sevastopol: Sevastopol State University, 2016. – P. 206-208. https://www.elibrary.ru/item.asp?id=27270483.

V.M. Gavrish, O.P. Gavrish, G.A. Baranov, E.A. Khrabrova. Use of biotechnological methods for utilization and processing of various waste species. Collection of articles based on the materials of the scientific and practical conference with international participation Environmental, industrial and energy security, 2017, P. 268–272.

https://www.elibrary.ru/item.asp?id=32364169.

Gavrish V, Chayka T, Baranov G. On the issue of the techniques to produce mass and low–price tungsten oxide nanopowder. Procedia Manufacturing. 37, 2019, 306–310.

https://doi.org/10.1016/j.promfg.2019.12.052.

Chaika T., Derbasova N., Gavrish V. Research division of tungsten carbide and cobalt as a result of microbiological waste destruction of tungstencobalt waste / Chaika T., Derbasova N., Gavrish V.// Mechanics and Advanced Technologies. 2013. No 3 (69). P. 125-130.

https://www.elibrary.ru/item.asp?id=26154856.

V Gavrish et al 2020 J. Phys.: Conf. Ser. 1652 012008. https://iopscience.iop.org/article/10.1088/1742-6596/1652/1/012008.

V Gavrish et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 168 012013.

https://iopscience.iop.org/article/10.1088/1757-899X/168/1/012013.

S.A. Fedorova, V.M. Gavrish, O.P. Gavrish, T.V. Chaika, G.A. Baranov Determination of optimal concentrations of additives of nanopowders of refractory metals to increase the strength characteristics of concrete / Power plants and technologies. 2019. Т. 5. No 1. P. 151-155.

https://www.elibrary.ru/item.asp?id=37145028.

V. Gavrish et al. 2021 J. Phys.: Conf. Сер. 1866 012008. https://iopscience.iop.org/article/10.1088/1742-6596/1866/1/012008.